14 research outputs found

    Insight into the light driven assembly of the oxygen evolving complex of photosystem II

    Get PDF
    Photosystem II (PSII) of plants, algae, and cyanobacteria utilize solar energy to catalyze one of the most important and most thermodynamically demanding reactions in nature: the oxidation of water into protons and molecular oxygen. Oxygen produced by PSII is toxic byproduct, however it is essential for respiration, the ozone layer and the extracted electrons drive the fixation of atmospheric CO2 to create biomass. The mechanism of water splitting driven by the light-induced charge separation is relatively well studied and high-resolution crystal structures are available to reveal the molecular aspects of PSII complex, however considerably less is known about how the inorganic Mn4O5Ca cluster is assembled de novo.The photosynthetic apparatus continuously experiences damage due to high light intensity and this results in the loss of photosynthetic activity. The primary photodamage occurs within main functional PSII unit, the D1 protein. To perform a highly efficient and sustained photosynthetic activity, damaged D1 protein should be replaced, with consequent reassembly of PSII. The key step in obtaining functional PSII de novo is the assembly of Mn4CaO5 core, driven by series of photo-oxidative reactions with incorporation of Mn and Ca ions into the coordination environment of PSII. The initial rate-limiting steps of the assembly of the PSII Mn4CaO5 core requires at least two quanta of light with the rate-limiting dark rearrangement step between them. A sensitive polarographic technique was used to track the assembly process under flash illumination as a function of the constituent Mn2+ and Ca2+ ions in genetically engineered membranes of the cyanobacterium Synechocystis sp. PCC6803 to elucidate the action of Ca2+ and peripheral proteins. We show that the protein scaffolding that organizes this process is allosterically modulated by the assembly protein Psb27, which together with Ca2+, stabilizes photoactivation intermediates.Photoactivation experiments with site-directed mutants D1-E189K and D1-E189R identified the role of D1-E189 in the formation the high affinity site of PSII. We have concluded that D1-E189 ligand is crucial during initial steps of photoactivation since it supports photoactivation intermediates by coordinating Ca2+ at its effectors site, which prevents the formation of inappropriately bound high-valency Mn at the oxygen evolving complex site

    Content of Metals in Phragmites australis Trin. ex Steud and Potamogeton pectinatus L. from Water Bodies of Different Salinity

    Get PDF
    Металлы определяли в двух видах макрофитов – Phragmites australis Trin. ex Steud и Potamogeton pectinatus L., произрастающих в водоемах с разной соленостью, с помощью эмиссионного спектрометра с индуктивно-связанной плазмой. Анализ результатов методом главных компонент показал, что на валовое содержание металлов влияет вид макрофитов и условия окружающей среды, в частности химический состав воды. Оба вида макрофитов из пресноводного водохранилища Бугач отличались более высокими концентрациями железа, алюминия, никеля, ванадия и кобальта по сравнению с теми же видами макрофитов, собранными в солоноватоводных озерах. Однако для макрофитов из оз. Шира, отобранных в опресненной и солоноватоводной частях озера, расхождений в содержании данных металлов не выявлено. В ряде случаев пробы из одной точки, но собранные в разные годы имели существенные различия – это наблюдалось для растений тростника из солоноватоводной станции оз. Шира, и растений рдеста из оз. Шунет. Было установлено, что наиболее высокое валовое содержание большинства металлов характерно для P. pectinatusMetals were determined in two species of macrophytes Phragmites australis Trin. ex Steud and Potamogeton pectinatus L. grown in lakes of different salinity, using emission spectrometer with inductively coupled plasma. Principal component analysis revealed that the total metal content is influenced by species of macrophytes and environmental conditions (in particular water chemistry). Both species of macrophytes from freshwater reservoir Bugach were characterized by higher concentrations of Fe, Al, Ni, V and Co in comparison with the same species from brackish lakes. However, there were no significant differences in content of these metals between samples of macrophytes taken in desalinated and saltwater parts of Shira Lake. In some cases, metal content of samples collected in different years at the same place were significantly different. It was observed for plants of Ph. australis collected in brackish station of Shira Lake, and plants of P. pectinatus from Lake Shunet. It was found that the highest total content of most metals is typical for P. pectinatu

    The stress and vascular catastrophes in newborn rats: mechanisms preceding and accompanying the brain hemorrhages

    Get PDF
    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health

    The D1-V185N mutation alters substrate water exchange by stabilizing alternative structures of the Mn4Ca-cluster in photosystem II

    No full text
    In photosynthesis, the oxygen-evolving complex (OEC) of the pigment-protein complex photosystem II (PSII) orchestrates the oxidation of water. Introduction of the V185N mutation into the D1 protein was previously reported to drastically slow O2-release and strongly perturb the water network surrounding the Mn4Ca cluster. Employing time-resolved membrane inlet mass spectrometry, we measured here the H218O/H216O-exchange kinetics of the fast (Wf) and slow (Ws) exchanging substrate waters bound in the S1, S2 and S3 states to the Mn4Ca cluster of PSII core complexes isolated from wild type and D1-V185N strains of Synechocystis sp. PCC 6803. We found that the rate of exchange for Ws was increased in the S1 and S2 states, while both Wf and Ws exchange rates were decreased in the S3 state. Additionally, we used EPR spectroscopy to characterize the Mn4Ca cluster and its interaction with the redox active D1-Tyr161 (YZ). In the S2 state, we observed a greatly diminished multiline signal in the V185N-PSII that could be recovered by addition of ammonia. The split signal in the S1 state was not affected, while the split signal in the S3 state was absent in the D1-V185N mutant. These findings are rationalized by the proposal that the N185 residue stabilizes the binding of an additional water-derived ligand at the Mn1 site of the Mn4Ca cluster via hydrogen bonding. Implications for the sites of substrate water binding are discussed.Originally included in thesis in manuscript form.</p

    Content of Metals in Phragmites australis Trin. ex Steud and Potamogeton pectinatus L. from Water Bodies of Different Salinity

    No full text
    Металлы определяли в двух видах макрофитов – Phragmites australis Trin. ex Steud и Potamogeton pectinatus L., произрастающих в водоемах с разной соленостью, с помощью эмиссионного спектрометра с индуктивно-связанной плазмой. Анализ результатов методом главных компонент показал, что на валовое содержание металлов влияет вид макрофитов и условия окружающей среды, в частности химический состав воды. Оба вида макрофитов из пресноводного водохранилища Бугач отличались более высокими концентрациями железа, алюминия, никеля, ванадия и кобальта по сравнению с теми же видами макрофитов, собранными в солоноватоводных озерах. Однако для макрофитов из оз. Шира, отобранных в опресненной и солоноватоводной частях озера, расхождений в содержании данных металлов не выявлено. В ряде случаев пробы из одной точки, но собранные в разные годы имели существенные различия – это наблюдалось для растений тростника из солоноватоводной станции оз. Шира, и растений рдеста из оз. Шунет. Было установлено, что наиболее высокое валовое содержание большинства металлов характерно для P. pectinatusMetals were determined in two species of macrophytes Phragmites australis Trin. ex Steud and Potamogeton pectinatus L. grown in lakes of different salinity, using emission spectrometer with inductively coupled plasma. Principal component analysis revealed that the total metal content is influenced by species of macrophytes and environmental conditions (in particular water chemistry). Both species of macrophytes from freshwater reservoir Bugach were characterized by higher concentrations of Fe, Al, Ni, V and Co in comparison with the same species from brackish lakes. However, there were no significant differences in content of these metals between samples of macrophytes taken in desalinated and saltwater parts of Shira Lake. In some cases, metal content of samples collected in different years at the same place were significantly different. It was observed for plants of Ph. australis collected in brackish station of Shira Lake, and plants of P. pectinatus from Lake Shunet. It was found that the highest total content of most metals is typical for P. pectinatu

    Draft genome sequence of Microbacterium oleivorans strain Wellendorf implicates heterotrophic versatility and bioremediation potential

    Get PDF
    Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of M. oleivorans strain Wellendorf that was isolated from an indoor door handle. The partial genome of M. oleivorans strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a Microbacterium oleivorans genome

    Substitution Effects in Spin-Polarized (Cr<sub>4-x</sub>Fe<sub>x</sub>)<sub>0.5</sub>AC (A = Ge, Si, Al) MAX Phases

    No full text
    The use of spintronic devices with a tunable magnetic order on small scales is highly important for novel applications. The MAX phases containing transition metals and/or magnetic ion-substituted lattices attract a lot of attention. In this study, the magnetic and electronic properties of (Cr4-xFex)0.5AC (A = Ge, Si, Al) compounds were predicted and investigated within the density functional theory. It was established that single-substituted (Cr3Fe1)0.5AC (A = Ge, Si, Al) lattices are favorable in terms of energy. An analysis of the magnetic states of the MAX phases demonstrated that their spin order changes upon substitution of iron atoms for chromium ones. It was found that mostly the (Cr4-xFex)0.5GeC and (Cr4-xFex)0.5AlC lattices acquire a ferrimagnetic state in contrast to (Cr4-xFex)0.5SiC for which the ferromagnetic spin order dominates. It was pointed out that the atomic substitution could be an efficient way to tune the magnetic properties of proposed (Cr4-xFex)0.5AC (A = Ge, Si, Al) MAX phases

    The stress and vascular catastrophes in newborn rats: mechanisms preceding and accompanying the brain hemorrhages

    No full text
    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health
    corecore